Confusion Matrix in R

Plotting the Confusion Matrix with ggplot in R
R
code
machine learning
Author

Enrique Pérez Herrero

Published

March 9, 2022

Confusion Matrix

The confusion matrix allows for the visualization of a classification algorithm’s performance. In this blog post, a function is provided to create an image of the confusion matrix. The R package caret includes the confusionMatrix function, which generates a comprehensive output.

Classification

We will perform a Naive Bayes classification on the classical Iris dataset.

Code
# train and test data
iris$spl <- caTools::sample.split(iris, SplitRatio = 0.8)
train <- subset(iris, iris$spl == TRUE)
test <- subset(iris, iris$spl == FALSE)

iris_nb <- naiveBayes(Species ~ ., data = train)
nb_train_predict <- predict(iris_nb, test[, names(test) != "Species"])

cfm <- confusionMatrix(nb_train_predict, test$Species)
cfm
Confusion Matrix and Statistics

            Reference
Prediction   setosa versicolor virginica
  setosa         10          0         0
  versicolor      0         10         2
  virginica       0          0         8

Overall Statistics
                                          
               Accuracy : 0.9333          
                 95% CI : (0.7793, 0.9918)
    No Information Rate : 0.3333          
    P-Value [Acc > NIR] : 8.747e-12       
                                          
                  Kappa : 0.9             
                                          
 Mcnemar's Test P-Value : NA              

Statistics by Class:

                     Class: setosa Class: versicolor Class: virginica
Sensitivity                 1.0000            1.0000           0.8000
Specificity                 1.0000            0.9000           1.0000
Pos Pred Value              1.0000            0.8333           1.0000
Neg Pred Value              1.0000            1.0000           0.9091
Prevalence                  0.3333            0.3333           0.3333
Detection Rate              0.3333            0.3333           0.2667
Detection Prevalence        0.3333            0.4000           0.2667
Balanced Accuracy           1.0000            0.9500           0.9000

Plotting

To plot the obtained confusion matrix as a ggplot graphic, we will use the following function:

Code
ggplot_confusion_matrix <- function(cfm) {
  mytitle <- paste("Accuracy", percent_format() (cfm$overall[1]),
                   "Kappa", percent_format() (cfm$overall[2]))
  p <-
    ggplot(data = as.data.frame(cfm$table),
           aes(x = Reference, y = Prediction)) +
    geom_tile(aes(fill = log(Freq)), colour = "white") +
    scale_fill_gradient(low = "white", high = "steelblue") +
    geom_text(aes(x = Reference, y = Prediction, label = Freq)) +
    theme(legend.position = "none") +
    ggtitle(mytitle)
  return(p)
}
Code
ggplot_confusion_matrix(cfm)