Max Determinant

Determinants of special square matrices with elements being the maximum or minimum between the indices of the elements.
math
linear algebra
determinant
Author

Enrique Pérez Herrero

Published

March 5, 2022

Plot3D of max matrix elements

Identity

The sequence A181983(n) gives the determinants of the square matrices: \(M_{n}\), with elements \(m_{i,j}= \max(i,j)\), where \(\max\) the is the maximum function.

This identity appears as follows:

\[\begin{equation} det{\bigg[ max(i,j) \bigg] }_{1\leq i,j \leq n} = -n \cdot {(-1)}^{n} = A181983(n) \end{equation}\]

Proof

A new matrix with the same determinant can be created by subtracting row \(i\) from row \(i+1\) starting from the 2nd row. The determinant of this new matrix can then be computed easily using the expansion by minors technique at element \(m_{1,n}\)

This can be better illustrated with an example:

We can transform:

\[\begin{equation} M_{10} = \left(\begin{array}{cccccccccc} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 2 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 3 & 3 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 4 & 4 & 4 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 5 & 5 & 5 & 5 & 5 & 6 & 7 & 8 & 9 & 10 \\ 6 & 6 & 6 & 6 & 6 & 6 & 7 & 8 & 9 & 10 \\ 7 & 7 & 7 & 7 & 7 & 7 & 7 & 8 & 9 & 10 \\ 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 9 & 10 \\ 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 10 \\ 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 \end{array} \right) \end{equation}\]

Into:

\[\begin{equation} M^{*}_{10} =\left(\begin{array}{cccccccccc} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \end{array} \right) \end{equation}\]

This proof can be generalized to a very similar kind of matrices, resulting in:

\[\begin{equation} det{\bigg[ max(i,j)^k \bigg]}_{1\leq i,j \leq n} = {(-1)}^{n-1} \cdot n^{k} \cdot \prod_{s=1}^{n-1}{(s+1)^k-s^k} \end{equation}\]

\[\begin{equation} det{\bigg[ min(i,j)^k \bigg]}_{1\leq i,j \leq n} = \prod_{s=1}^{n-1}{(s+1)^k-s^k} \end{equation}\]

References

[1]
N. J. A. Sloane, “A051125: Table t(n,k) = maxn,k read by antidiagonals (n >= 1, k >= 1).” Available: https://oeis.org/A051125/
[2]
M. Somos, “A181983: A(n) = (-1)^(n+1) * n.” 2012. Available: https://oeis.org/A181983/
[3]
E. Deutsch, “A161124: Number of inversions in all fixed-point-free involutions of 1,2,...,2n.” Jun. 2009. Available: https://oeis.org/A161124/
[4]
N. J. A. Sloane, “A001147: Double factorial of odd numbers: A(n) = (2*n-1)!! = 1*3*5*...*(2*n-1).” Available: https://oeis.org/A001147/